术经 技 验

望云煤矿15101运输顺槽围岩松动圈 测试分析与控制技术研究

靳 峰

(山西兰花科技创业股份有限公司望云煤矿分公司)

摘 要:为保障15101运输顺槽围岩的稳定,采用现场实测的方式进行围岩松动圈的测试分析, 基于测试结果得出运输顺槽处的两帮松动圈范围约为1.6m,基于工作面地质条件和围岩松动圈分析 结果,确定巷道采用锚网索支护方案,采用理论分析的方式进行巷道各项支护参数的设计,在巷道掘 进期间进行围岩变形分析。结果表明:巷道采用现有支护方案,掘进期间围岩变形量小,保障了围岩 的稳定。

关键词:回采巷道;松动圈;围岩控制;围岩变形量

1 工程概况

山西兰花科技创业股份有限公司望云煤矿分公司15101工作面井田东区,工作面为井田东区15#煤 层首采工作面,该煤层位于太原组下部K2灰岩之下,上距9号煤层约41m,煤层厚2.40m~12.55m,平均厚4.86m,平均倾角为6°,属全区稳定可采煤层,含0~4层夹矸,单层矸石厚0.03~0.60m,煤层顶底板岩层特征如图1。15101运输顺槽沿煤层底板掘进,断面为矩形,巷道宽度×高度=4.0×4.0m,现为保障巷道支护方案的合理性,特进行围岩松动圈测试 分析与围岩控制技术分析研究。(如图1)

2 围岩松动圈测试分析

2.1 测试方案及数据分析

为监测 150101 工作面运输顺槽巷道的帮部围 岩破坏情况,采用CT-2型超声波围岩裂隙探测仪对 运输顺槽的4号测站进行松动圈测试,测站位置和 测孔布置分别如图2所示。

如上图所示,在运输顺槽中距回风大巷550m处 布置测站,该测站与下一个工作面的回风顺槽相邻,

分层厚度 (m)	柱状图				岩矿层名称及岩性描述			
1.23~11.52					灰黑色泥岩,有时相变为粉砂质泥岩,底部有时含10号薄煤层。			
0~1.12				10	10号煤,灰黑色,光亮一半亮型,区内不稳定,不可采。			
0.80~1.20					灰黑色泥岩,有时相变为砂质泥岩。			
0.33~1.88	/		\setminus	K4	深灰色生物屑微晶灰岩。			
6.20~8.80				12	灰黑色泥岩,中部夹薄层状灰岩(K4下)和12号煤。			
2.26~4.34	/			K3	深灰色生物屑微晶灰岩。			
8.04~10.17	/			13	灰黑色泥岩夹粉砂质泥岩,顶部有时含13号薄煤层,不可采。			
5.87~11.60				K2	深灰色生物屑微晶灰岩,含腕足、海百合、蜒及螺类化石。			
2.40~12.55	/		\setminus	15	15号煤,半亮型,条带状结构,层状构造,含黄铁矿结核,全区稳 定可采。			
6.10~13.00				K1	灰黑色泥岩,有时相变为铝土质泥岩、炭质泥岩,底部为灰色中薄 层状中细粒岩屑石英砂岩。			

图1 煤层顶底板岩层柱状图

a)测站布置

b)测试钻孔布置

图2 松动圈测站测孔布置示意图

了 次/	波速(m/s)						
ゴレ{木/m	a号孔	b号孔	c号孔	d号孔			
2.6	2781	2612	2734	2960			
2.4	2732	2653	2653	2757			
2.2	2774	2584	2756	2812			
2.0	2763	2663	2598	2663			
1.8	2645	2354	2374	2627			
1.6	2631	2516	2294	2564			
1.4	2375	1938	2167	2358			
1.2	2120	1793	2073	2177			
1.0	2263	1889	1778	2043			
0.8	1925	1953	1643	1873			

表1 4号测站松动圈测试基础数据

2022.2(总第82期)| 兰花科技 49

技术经验

因此需要对巷道帮部围岩的破坏情况有详细的了 解,在该测站布置4个测孔,各测孔的具体测试结果 如下图3和表1所示:

50 兰花科技 | 2022.2(总第82期)

分析图 3a)可知,a 号测孔中在 1.6m 深度之前, 声波波速均小于在完整泥岩中的波速,在 1.2m 处声 波波速突减至 2120m/s,说明此处存在离层;在 1.8m 之后波速达到了声波在完整煤层中的波速,说明 a 号测孔的松动圈范围约为 1.6m。

分析图 3b)可知,b号测孔的波速在1.4m 孔深前,波速小于完整煤层中的波速,在巷道围岩1.4m 之后,波速突增,在1.6m之后波速达到了声波在完 整煤层中的波速,但在1.8m处波速有一明显下降, 说明此处有离层存在,综上,b号测孔的帮部围岩松 动圈范围约为1.4m。

分析图3c)可知,c号测孔的波速在1.6m孔深之前的范围内,波速小于在完整煤层中的波速;在 1.6m之后,波速突增,在1.6m之后波速达到了声波 在完整煤层中的波速,但在2.2m~2.4m范围内波速 有所减小,说明该范围内由少量裂隙存在,综上,c 号测孔的帮部围岩松动圈范围约为1.6m。

分析图 3d)可知,d号测孔的波速在1.6m 孔深之前的范围内,波速小于在完整煤层中的波速;在 1.6m之后,波速突增,在1.6m之后波速均达到了声 波在完整煤层中的波速,但在1.8m~2.2m 范围内波 速增加较大,说明此处围岩完整性较好,综上,d号 测孔的帮部围岩松动圈范围约为1.6m。

通过对4测站的4个波速变化图进行对比可以 看出:a号测孔在孔口1.4m范围以内裂隙发育程度 较高,且有离层存在;b号测孔在1.8m处也有一离层 存在,需加强支护;c号测孔波速变化较为平滑,说 明c号测孔内围岩裂隙发育较为规律;d号测孔在 1.8m~2.2m范围内波速增加较大,说明此处围岩完 整性较好,围岩裂隙发育也较为规律。

2.2松动圈测试结果分析

根据超声波测试仪的主要组成部分和常见介质 中声波的传播速度,基于测试结果可计算得出声速 值^[3-5],根据测试结果可知15101运输顺槽中,在测

孔不同深度处的声波波速值的变化规律与轨道大巷 处的变化规律相同,在孔深范围小于1.6m时,波速 值小于完整煤层中的波速,且波动较大;在孔深大于 1.8m至孔底范围内所有部位的波速值基本处于正 常波速以上;据此可知150101工作面运输顺槽处的 两帮松动圈范围约为1.6m。

3 围岩控制技术研究

3.1 支护参数理论计算

根据15101工作面的地质条件和围岩松动圈测 试结果,确定巷道采用锚网索支护方案,具体各项支 护参数设计如下:

(1)顶板支护参数计算分析

①顶板支护载荷集度、,锚杆布置密度计算公式 如下^[6]:

$$q = (\sum h + \frac{H \tan(45^{\circ} - \varphi/2) + b}{f})\gamma = (1.6 + \frac{4.5 \times 0.62 + 2.5}{8.2}) \times 27 = 60.62 KPa$$
$$n = \frac{KK'q}{F} = \frac{1.2 \times 1.1 \times 60.62}{100} = 0.80$$

式中H—巷道高度,4.5m;φ—巷帮煤及岩体内 摩擦角,26°;f—岩体普氏系数,8.20;b—巷道宽度的 一半,2.5m;γ一直接顶容重,27KN/m3;h一直接顶损 坏厚度,基于上述分析取为1.6m;F为锚杆设计锚固 力,取100KN;q为载荷集度,60.62KPa;K为安全系 数,取1.2;K'为变形载荷系数取1.1;

②顶锚杆布置间、排距:计算公式如下:

$$a = \sqrt{\frac{1}{n}} = \sqrt{\frac{1}{0.80}} \approx 1.12m$$

根据实体煤侧运输顺槽巷道断面参数及实际经验,取顶锚杆排距为1.2m,间距为1.1m。

③锚杆长度的确定:顶板锚杆长度计算公式 为^[7]:

 $l = l_1 + l_2 + l_3 = 0.1 + 0.645 + 1.14 = 1.885m$

式中:l1为锚杆外露长度;l2为锚杆有效长度; l3为锚杆锚固长度,m;根据地质条件确定锚杆长度 为2.1m。

(2)运输顺槽帮部支护参数分析:锚杆布置密度 及间排距的计算公式如下^[8]:

$$n = \frac{P}{P_0} = \frac{57.2}{100} = 0.57$$
$$a = \sqrt{\frac{1}{n}} = \sqrt{\frac{1}{0.57}} \approx 1.32m$$

2022.2(总第82期) | 兰花科技 51

根据巷道断面参数并结合实际经验,取帮锚杆间距为1.3m。

综上分析得出,15101运输顺槽顶板支护采用 的锚杆型号为φ20×2100mm的左旋无纵筋螺纹钢锚 杆,锚杆间排距为1100mm×1200mm,每根锚杆配用 MSCKa2335和MSZ2360树脂药卷各一支。帮部支 护采用的锚杆型号为φ20×2100mm的左旋无纵筋螺 纹钢锚杆,锚杆间排距为1300mm×1200mm,每根锚 杆配用MSCKa2335和MSZ2360树脂药卷各一支。

3.2支护方案

①顶板控制:顶板采用Φ20mm×L2100mm的左 旋无纵筋螺纹钢,间排距为1100mm×1200mm,预紧 扭矩不低于250N·m,锚杆采用MSCKa2335和 MSZ2360各1支进行锚固,托盘规格为150mm× 150mm×10mm的自制扁钢钢板。金属网采用12号 铁丝编制菱形金属网护顶。

②两帮控制:两帮采用左旋螺纹钢锚杆(开采帮 采用玻璃钢纤维锚杆)配合12号菱形金属网支护。 锚杆规格为φ20×2100mm,锚杆间排距为1300mm× 1200mm,预紧扭矩不低于250N·m,锚杆采用MSC-Ka2335和MSZ2360各1支进行锚固,托板规格为 150mm×150mm×10mm自制扁钢钢板。金属网采用 12号铁丝编制菱形金属网。

具体15101运输顺槽支护方案如图4所示。

3.3 效果分析

15101运输顺槽掘进期间,在滞后巷道掘进迎头 2m的位置处采用十字布点法进行围岩变形监测分 析,持续观测一个月,得出围岩变形量曲线图如图5。

分析图5可知,15101运输顺槽掘进期间,在现 有支护方案下,围岩变形主要出现之后掘进迎头0~ 50m的范围内,随着巷道掘进作业的进行,围岩变形 量大幅降低,当监测断面滞后掘进迎头60m时,此时 围岩变形基本达到稳定状态,最终巷道顶底板最大 移近量分别为28mm和85mm,围岩控制效果较好。

4 结论

根据15101运输顺槽的地质条件,通过进行巷道 围岩松动圈测试得出,运输顺槽处的两帮松动圈范 围约为1.6m;基于松动圈测试结果,进一步通过围岩 支护参数设计,具体确定出巷道锚网索支护方案中 的各项参数,根据巷道掘进期间的围岩变形监测结 果可知,巷道在现有支护方案下,围岩控制效果好。

参考文献:

[1]曾冬艳,刘增辉,史金伟,王帅帅.考虑围岩性质劣化的软岩巷道破坏规律数值模拟研究[J].矿业研究与开发, 2021,41(02):45-51.

[2]苏士龙,高海海,周康乐.基于松动圈现场测试的非 对称变形巷道支护技术研究[J].中国矿业,2021,30(01): 155-159+167.

[3]唐满元, 苗晓伟, 李青锋, 彭跃金.22117 回风巷围岩 塑性区及松动破坏特征分析[J]. 矿业工程研究, 2020, 35 (03):14-20.

[4]苏士龙,高海海,周康乐.基于统一强度理论的巷道 围岩松动圈计算方法[J].科学技术与工程,2020,20(27): 11045-11050.

[5] 单梁, 王凯, 范文昌, 万晓, 谭文峰. 特厚松软煤层巷 道支护技术研究[1]. 矿业研究与开发, 2020, 40(09):87-92.

[6] 疏义国,杨张杰,翟恩发,等.裂隙发育特厚煤层综放沿空 掘巷大变形成因及关键控制技术[J].煤炭技术,2020,39(12):8-11.

[7]张福民,张东峰,张小强,等.深井沿空巷道合理位置确 定及围岩控制技术[J].中国矿业,2020,29(11):136-141+146.

[8]杜贝举,刘长友,吴锋锋,等.深井高应力软弱围岩巷 道变形机理及控制研究[J].采矿与安全工程学报,2020,37 (06):1123-1132.

|52||兰花科技||2022.2(总第82期)|